![]()
|
Go to the first, previous, next, last section, table of contents.
11 The emulator file formatsThis chapter gives a technical description of the various files supported by the emulators. 11.1 The T64 tape image format(This section was taken from the C64S distribution.)
The 11.1.1 T64 File structure
11.1.2 Tape Record
11.1.3 File record
Valid entry types are:
Notes:
11.2 The G64 GCR-encoded disk image format(This section was contributed by Peter Schepers (schepers@ist.uwaterloo.ca) and slightly edited by Ettore Perazzoli (ettore@comm2000.it).)
This format was defined in 1998 as a cooperative effort between several
emulator people, mainly Per Håkan Sundell, author of the CCS64 C64
emulator, Andreas Boose of the VICE CBM emulator team and Joe
Forster/STA, the author of Star Commander. It was the first real public
attempt to create a format for the emulator community which removed
almost all of the drawbacks of the other existing image formats, namely
The intention behind
Each track entry in simply the raw stream of GCR data, just what a read head would see when a diskette is rotating past it. How the data gets interpreted is up to the program trying to access the disk. Because the data is stored in such a low-level manner, just about anything can be done. Most of the time I would suspect the data in the track would be standard sectors, with SYNC, GAP, header, data and checksums. The arrangement of the data when it is in a standard GCR sector layout is beyond the scope of this document. Since it is a flexible format in both track count and track byte size, there is no "standard" file size. However, given a few constants like 42 tracks and halftracks, a track size of 7928 bytes and no speed offset entries, the typical file size will a minimum of 333744 bytes. Below is a dump of the header, broken down into its various parts. After that will be an explanation of the track offset and speed zone offset areas, as they demand much more explanation. Addr 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ---- ----------------------------------------------- 0000: 47 43 52 2D 31 35 34 31 00 54 F8 1E .. .. .. ..
An obvious question here is "why are there 84 tracks defined when a
normal At first, the defined track size value of 7928 bytes may seem to be arbitrary, but it is not. It is determined by the fastest write speed possible (speed zone 0), coupled with the average rotation speed of the disk (300 rpm). After some math, the answer that actually comes up is 7692 bytes. Why the discrepency between the actual size of 7692 and the defined size of 7928? Simply put, not all drives rotate at 300 rpm. Some can be faster or slower, so a upper safety margin of +3% was built added, in case some disks rotate slower and can write more data. After applying this safety factor, and some rounding-up, 7928 bytes per track was arrived at. Also note that this upper limit of 7928 bytes per track really only applies to 1541 and compatible disks. If this format were applied to another disk type like the SFD1001, this value would be higher.
Below is a dump of the first section of a Addr 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ---- ----------------------------------------------- 0000: .. .. .. .. .. .. .. .. .. .. .. .. AC 02 00 00 0010: 00 00 00 00 A6 21 00 00 00 00 00 00 A0 40 00 00 0020: 00 00 00 00 9A 5F 00 00 00 00 00 00 94 7E 00 00 0030: 00 00 00 00 8E 9D 00 00 00 00 00 00 88 BC 00 00 0040: 00 00 00 00 82 DB 00 00 00 00 00 00 7C FA 00 00 0050: 00 00 00 00 76 19 01 00 00 00 00 00 70 38 01 00 0060: 00 00 00 00 6A 57 01 00 00 00 00 00 64 76 01 00 0070: 00 00 00 00 5E 95 01 00 00 00 00 00 58 B4 01 00 0080: 00 00 00 00 52 D3 01 00 00 00 00 00 4C F2 01 00 0090: 00 00 00 00 46 11 02 00 00 00 00 00 40 30 02 00 00A0: 00 00 00 00 3A 4F 02 00 00 00 00 00 34 6E 02 00 00B0: 00 00 00 00 2E 8D 02 00 00 00 00 00 28 AC 02 00 00C0: 00 00 00 00 22 CB 02 00 00 00 00 00 1C EA 02 00 00D0: 00 00 00 00 16 09 03 00 00 00 00 00 10 28 03 00 00E0: 00 00 00 00 0A 47 03 00 00 00 00 00 04 66 03 00 00F0: 00 00 00 00 FE 84 03 00 00 00 00 00 F8 A3 03 00 0100: 00 00 00 00 F2 C2 03 00 00 00 00 00 EC E1 03 00 0110: 00 00 00 00 E6 00 04 00 00 00 00 00 E0 1F 04 00 0120: 00 00 00 00 DA 3E 04 00 00 00 00 00 D4 5D 04 00 0130: 00 00 00 00 CE 7C 04 00 00 00 00 00 C8 9B 04 00 0140: 00 00 00 00 C2 BA 04 00 00 00 00 00 BC D9 04 00 0150: 00 00 00 00 B6 F8 04 00 00 00 00 00 .. .. .. ..
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ----------------------------------------------- 0150: .. .. .. .. .. .. .. .. .. .. .. .. 03 00 00 00 0160: 00 00 00 00 03 00 00 00 00 00 00 00 03 00 00 00 0170: 00 00 00 00 03 00 00 00 00 00 00 00 03 00 00 00 0180: 00 00 00 00 03 00 00 00 00 00 00 00 03 00 00 00 0190: 00 00 00 00 03 00 00 00 00 00 00 00 03 00 00 00 01A0: 00 00 00 00 03 00 00 00 00 00 00 00 03 00 00 00 01B0: 00 00 00 00 03 00 00 00 00 00 00 00 03 00 00 00 01C0: 00 00 00 00 03 00 00 00 00 00 00 00 03 00 00 00 01D0: 00 00 00 00 03 00 00 00 00 00 00 00 03 00 00 00 01E0: 00 00 00 00 02 00 00 00 00 00 00 00 02 00 00 00 01F0: 00 00 00 00 02 00 00 00 00 00 00 00 02 00 00 00 0200: 00 00 00 00 02 00 00 00 00 00 00 00 02 00 00 00 0210: 00 00 00 00 02 00 00 00 00 00 00 00 01 00 00 00 0220: 00 00 00 00 01 00 00 00 00 00 00 00 01 00 00 00 0230: 00 00 00 00 01 00 00 00 00 00 00 00 01 00 00 00 0240: 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 0250: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0260: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0270: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0280: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0290: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02A0: 00 00 00 00 00 00 00 00 00 00 00 00 .. .. .. ..
Starting here at $02AC is the first track entry (from above, it is the first entry for track 1.0) The track offsets (from above) require some explanation. When one is set to all 0's, no track data exists for this entry. If there is a value, it is an absolute reference into the file (starting from the beginning of the file). From the track 1.0 entry we see it is set for $000002AC. Going to that file offset, here is what we see... 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ----------------------------------------------- 02A0: .. .. .. .. .. .. .. .. .. .. .. .. 0C 1E FF FF 02B0: FF FF FF 52 54 B5 29 4B 7A 5E 95 55 55 55 55 55 02C0: 55 55 55 55 55 55 FF FF FF FF FF 55 D4 A5 29 4A 02D0: 52 94 A5 29 4A 52 94 A5 29 4A 52 94 A5 29 4A 52
Following the track data is filler bytes. In this case, there are 368 bytes of unused space. This space can contain anything, but for the sake of those wishing to compress these images for storage, they should all be set to the same value. In the sample I used, these are all set to $FF. Below is a dump of the end of the track 1.0 data area. Note the actual track data ends at address $20B9, with the rest of the block being unused, and set to $FF. 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ----------------------------------------------- 1FE0: 52 94 A5 29 4A 52 94 A5 29 4A 52 94 A5 29 4A 52 1FF0: 94 A5 29 4A 52 94 A5 29 4A 52 94 A5 29 4A 52 94 2000: A5 29 4A 52 94 A5 29 4A 52 94 A5 29 4A 52 94 A5 2010: 29 4A 52 94 A5 29 4A 52 94 A5 29 4A 52 94 A5 29 2020: 4A 52 94 A5 29 4A 52 94 A5 29 4A 52 94 A5 29 4A 2030: 55 55 55 55 55 55 FF FF FF FF FF FF FF FF FF FF 2040: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 2050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 2060: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 2070: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 2080: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 2090: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 20A0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 20B0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 20C0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 20D0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 20E0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 20F0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 2100: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 2110: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 2120: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 2130: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 2140: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 2150: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 2160: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 2170: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 2180: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 2190: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 21A0: FF FF FF FF FF FF .. .. .. .. .. .. .. .. .. .. The speed offset entries can be a little more complex. The 1541 has four speed zones defined, which means the drive can write data at four distinct speeds. On a normal 1541 disk, these zones are as follows:
Note that you can, through custom programming of the 1541, change the speed zone of any track to something different (change the 3 to a 0) and write data differently. From the dump of the speed offset entries above, we see that all the entries are in the range of 0-3. If any entry is less than 4, this is not considered a speed offset but defines the whole track to be recorded at that one speed. In the example I had, there were no offsets defined, so no speed zone dump can be shown. However, I can define what should be there. You will have a block of data, 1982 bytes long. Each byte is encoded to represent the speed of 4 bytes in the track offset area, and is broken down as follows: Speed entry $FF: in binary %11111111 |'|'|'|' | | | | | | | +- 4'th byte speed (binary 11, 3 dec) | | +--- 3'rd byte speed (binary 11, 3 dec) | +----- 2'nd byte speed (binary 11, 3 dec) +------- 1'st byte speed (binary 11, 3 dec) It was very smart thinking to allow for two speed zone settings, one in the offset block and another defining the speed on a per-byte basis. If you are working with a normal disk, where each track is one constant speed, then you don't need the extra blocks of information hanging around the image, wasting space. What may not be obvious is the flexibility of this format to add tracks and speed offset zones at will. If a program decides to write a track out with varying speeds, and no speed offset exist, a new block will be created by appending it to the end of the image, and the offset pointer for that track set to point to the new block. If a track has no offset yet, meaning it doesn't exist (like a half-track), and one needs to be added, the same procedure applies. The location of the actual track or speed zone data is not important, meaning they do not have to be in any particular order since they are all referenced by the offsets at the beginning of the image. Go to the first, previous, next, last section, table of contents. |