Home
Manual
Packages
Global Index
Keywords
Quick Reference
|
/*
PLWF.I
Simple "painter's algorithm"-class routine for making 3-D wire frames
and related models.
$Id$
*/
/* Copyright (c) 1996. The Regents of the University of California.
All rights reserved. */
require, "pl3d.i";
func plwf (z,y,x, fill=,shade=,edges=,ecolor=,ewidth=,cull=,scale=,cmax=)
/* DOCUMENT plwf, z
or plwf, z, y,x
plots a 3-D wire frame of the given Z array, which must have the
same dimensions as the mesh (X, Y). If X and Y are not given, they
default to the first and second indices of Z, respectively.
The drawing order of the zones is determined by a simple "painter's
algorithm", which works fairly well if the mesh is reasonably near
rectilinear, but can fail even then if the viewpoint is chosen to
produce extreme fisheye perspective effects. Look at the resulting
plot carefully to be sure the algorithm has correctly rendered the
model in each case.
KEYWORDS: fill -- optional colors to use (default is to make zones
have background color), same dimension options as
for z argument to plf function
shade -- set non-zero to compute shading from current
3D lighting sources
edges -- default is 1 (draw edges), but if you provide fill
colors, you may set to 0 to supress the edges
ecolor, ewidth -- color and width of edges
cull -- default is 1 (cull back surfaces), but if you want
to see the "underside" of the model, set to 0
scale -- by default, Z is scaled to "reasonable" maximum
and minimum values related to the scale of (X,Y).
This keyword alters the default scaling factor, in
the sense that scale=2.0 will produce twice the
Z-relief of the default scale=1.0.
cmax -- the ambient= keyword in light3 can be used to
control how dark the darkest surface is; use this
to control how light the lightest surface is
the lightwf routine can change this parameter
interactively
SEE ALSO: lightwf, plm, plf, orient3, light3, window3, limit3
*/
{
if (_draw3) {
xyz= _nxt(z);
fill= _nxt(z);
shade= _nxt(z);
edges= _nxt(z);
ecolor= _nxt(z);
ewidth= _nxt(z);
cull= _nxt(z);
cmax= _nxt(z);
get3_xy, xyz, x, y, z, 1;
/* rotate (x,y,0) into on-screen orientation to determine order
* just use four corners for this */
nx= dimsof(x);
ny= nx(3);
nx= nx(2);
xyzc= xyz(,1:nx:nx-1,1:ny:ny-1);
xyzc(3,,)= 0.0;
get3_xy, xyzc, xc, yc, zc, 1;
/* compute mean i-edge and j-edge vector z-components */
iedge= avg(zc(0,)-zc(1,));
jedge= avg(zc(,0)-zc(,1));
/* compute shading if necessary */
if (shade) {
xyz(1,,)= x;
xyz(2,,)= y;
xyz(3,,)= z;
fill= get3_light(xyz);
}
/* The order either requires a transpose or not, reversal of the
order of the first dimension or not, and reversal of the order
of the second dimension or not. */
/* The direction with the minimum magnitude average z-component must
vary fastest in the painting order. If this is the j-direction,
a transpose will be required to make this the i-direction. */
if (abs(jedge)<abs(iedge)) {
tmp= iedge; iedge= jedge; jedge= tmp;
x= transpose(x);
y= transpose(y);
if (!is_void(fill)) fill= transpose(fill);
}
/* Zones must be drawn from back to front, which means that the
average z-component of the edge vectors must be positive. This
can be arranged by reversing the order of the elements if
necessary. */
if (iedge<0.0) {
x= x(::-1,);
y= y(::-1,);
if (!is_void(fill)) fill= fill(::-1,);
}
if (jedge<0.0) {
x= x(,::-1);
y= y(,::-1);
if (!is_void(fill)) fill= fill(,::-1);
}
plf, fill, y,x, edges=edges,ecolor=ecolor,ewidth=ewidth,
cmin=0.0,cmax=cmax,legend=string(0);
return;
}
xyz= xyz_wf(z, y, x, scale, scale=scale);
if (is_void(edges)) edges= 1;
if (is_void(shade)) shade= 0;
else if (!is_void(fill))
error, "specify either fill or shade, not both";
clear3;
limit3, scale;
set3_object, plwf,
_lst(xyz, fill, shade, edges, ecolor, ewidth, cull, cmax);
}
func lightwf (cmax)
/* DOCUMENT lightwf, cmax
Sets the cmax= parameter interactively, assuming the current
3D display list contains the result of a previous plwf call.
This changes the color of the brightest surface in the picture.
The darkest surface color can be controlled using the ambient=
keyword to light3.
SEE ALSO: plwf, light3
*/
{
list= _cdr(_draw3_list, _draw3_n);
if (_car(list)!=plwf) error, "current 3D display list is not a plwf";
_undo3_set, lightwf, _car(_car(list,2), 8, cmax);
}
/* The function which scales the "topography" of z(x,y) is
* potentially useful apart from plwf.
* For example, the xyz array used by plwf can be converted from
* a quadrilateral mesh plotted using plf to a polygon list plotted
* using plfp like this:
* xyz= xyz_wf(z,y,x,lims,scale=scale);
* ni= dimsof(z)(2);
* nj= dimsof(z)(3);
* list= indgen(1:ni-1)+ni*indgen(0:nj-2)(-,);
* xyz= xyz(,([0,1,ni+1,ni]+list(-,))(*));
* nxyz= array(4, (ni-1)*(nj-1));
* ...
* limit3, lims;
*/
func xyz_wf (z, y, x, &lims, scale=)
{
if (min(dimsof(z))<2) error, "impossible dimensions for z array";
if (is_void(y) || is_void(x)) {
if (!is_void(y) || !is_void(x)) error, "either give y,x both or neither";
nx= dimsof(z)(2);
ny= dimsof(z)(3);
x= span(1,nx,nx)(,-:1:ny);
y= span(1,ny,ny)(-:1:nx,);
} else if (anyof(dimsof(x)!=dimsof(z)) ||
anyof(dimsof(x)!=dimsof(z))) {
error, "x, y, and z must all have same dimensions";
}
lims= array(0., 3,3);
lims(1:2,1)= xnx= _wf_safe(x);
lims(1:2,2)= ynx= _wf_safe(y);
lims(1:2,3)= _wf_safe(z);
lims(3,1)= xnx(ptp);
lims(3,2)= ynx(ptp);
xyscl= double(max(xnx(ptp),ynx(ptp)));
if (!is_void(scale)) xyscl*= scale;
lims(3,3)= 0.5*xyscl;
xyz= array(0.0, 3,dimsof(z));
xyz(1,,)= x;
xyz(2,,)= y;
xyz(3,,)= z;
return xyz;
}
func _wf_safe (a)
{
mx= max(a);
mn= min(a);
if (mx==mn) {
d= mn? 0.01*abs(mn) : 0.01;
mn-= d;
mx+= d;
}
return [mn,mx];
}
|